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EXECUTIVE SUMMARY 

BGC Engineering Inc. (BGC), in partnership with GeoHazards International (GHI), has developed 
a regional coseismic landslide susceptibility model and map for the Kingdom of Bhutan (Bhutan), 
which considers seismic shaking data for two different earthquake scenarios generated for GHI 
by Verisk Analytics.  

A regional coseismic landslide susceptibility model estimates landslide likelihood given the 
occurrence of specific degrees of shaking from an earthquake. Maps are an output of the model, 
and display expected spatial landslide distribution associated with an earthquake. The intended 
use of such a model and map for Bhutan is to inform work by authorities and practitioners related 
to country-scale land use planning, development regulation, and emergency management in 
terrain prone to seismic-triggered landslides. Specifically, the work is intended to inform where 
landslides may be more or less likely to occur during the earthquake scenarios considered in this 
study – information that can support regional to country-scale risk management decision making. 

The purpose of coseismic landslide susceptibility modelling is to illustrate landslide likelihood 
given the occurrence of specific degrees of shaking from an earthquake. To produce this output, 
a data-driven model was developed that ingests geospatial data representing coseismic 
landslides, the seismic data associated with their respective earthquake events, and a range of 
topographic, geologic, and thematic data. These data are used within the model to find 
relationships between ground shaking, terrain conditions, and earthquake-triggered landslide 
occurrence, and the map is an output of the model. 

Two earthquake scenarios provided by Verisk Analytics were tested for this study. According to 
information provided by GHI, one scenario is a magnitude 7 (M7) earthquake occurring along the 
Dhubri-Chungthang right-lateral strike slip fault in Southwestern Bhutan. This scenario was 
reportedly modeled after a 1980 M6.3 earthquake that occurred at a depth of 45 km. The M7 
scenario earthquake is interpreted to occur along the same fault zone but at a shallower depth, 
occurring at 12 km and rupturing to the surface, as this could be a potentially more damaging 
example of an earthquake for southwestern Bhutan.  

The second scenario is a M8 earthquake that represents a hypothetical repeat of the 1714 ~M8 
earthquake along the Main Himalayan Thrust fault along the southern border of Bhutan. This 
scenario is estimated to occur at a depth of 10 km and with a northerly dip of 10 degrees, rupturing 
the fault from the surface to a depth of 20 km. 

For the Kingdom of Bhutan, we considered a recorded M6.1 earthquake in eastern Bhutan from 
2009 plus the two hypothetical scenario earthquakes and found: 

• For an equivalent of the M6.1 event in 2009, we expect about 18 landslides to have 
occurred nation-wide, including 5 along roads and 1 along national highways.  

• For an equivalent of the M7 scenario, we expect about 750 to 3,650 landslides nation-
wide, concentrated near the source fault along the west border of Bhutan. Of these, about 
20 to 60 landslides are expected to occur within 200 m of national highways. 
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• For an equivalent of the M8 scenario, we expect about 36,000 to 41,000 landslides nation-
wide, concentrated in the southern half of Bhutan. Of these, 600 to 1,200 landslides are 
expected to occur within 200 m of national highways.  

The models have a number of specific limitations, including: 
• They have been developed with a nominal resolution of 30 m. Very limited meaning, if 

any, can be taken from the map for any area smaller than about 500 m by 500 m.  
• The results of this study can help understand where landslides may occur following a 

specific earthquake with known location and magnitude, but they give no insight as to 
where or when a landslide-triggering earthquake may occur.  

• The coseismic landslide susceptibility models presented in this report give a forecast of 
expected landslide distribution, in space, associated with a specific earthquake event. 
Each model is specific to a given earthquake scenario and does not apply to any other 
earthquake. 

• The models are unable to distinguish between different landslide types.  

Although subject to limitations, the results of this study show that existing United States 
Geological Survey (USGS) global models for coseismic landslide susceptibility can be improved 
through the use of higher resolution topographic data, the inclusion of additional explanatory 
variables, and the use of a range of analytical models.  

The models produced in this work are intended to be used at a national scale in Bhutan, with the 
following intended uses: 

• Education and awareness  
• Disaster response planning 
• Prioritization of more detailed region-specific or site-specific study. 

BGC makes the following recommendations for potential future work to improve the model results: 
1. Include more events in the model training.  
2. Allow for different weighting of events.  
3. Proximity to road cuts.  
4. Include features that account for position relative to the fault. 
5. Include information about antecedent soil moisture conditions.  
6. Include PGV and MMI in results for Bhutan scenario earthquakes. 
7. Include higher resolution regional data.  
8. Compile coseismic landslide data for the Kingdom of Bhutan.  

BGC makes the following recommendations for future work to improve the use of results in 
decision making: 

1. Compare results to building locations, settlements or infrastructure to prioritize further 
assessment.  

2. Develop a plan to incorporate results into planning, policy, and emergency management.  

 



GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page iv 

BGC ENGINEERING INC. 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY ..................................................................................................... ii 
LIST OF TABLES ............................................................................................................... iv 
LIST OF FIGURES ............................................................................................................. iv 
LIST OF APPENDICES ...................................................................................................... iv 
LIST OF DRAWINGS ......................................................................................................... iv 
1.0 INTRODUCTION ........................................................................................................ 1 

1.1. Study Area ............................................................................................................. 1 
1.2. Scope of Work ....................................................................................................... 1 

2.0 METHODOLOGY ....................................................................................................... 3 
2.1. Modelling Approach .............................................................................................. 3 
2.2. Earthquake Scenarios ........................................................................................... 7 

3.0 RESULTS ................................................................................................................... 9 
3.1. Key Findings: Model Output for Bhutan Earthquake Scenarios ...................... 10 

4.0 INTENDED USE OF THE MODEL OUTPUT ............................................................ 12 
4.1. Interpretation of the Model Results .................................................................... 12 
4.2. Model Limitations ................................................................................................ 12 
4.3. Potential Model Improvements ........................................................................... 13 

5.0 Recommendations .................................................................................................. 15 
6.0 CLOSURE ................................................................................................................ 16 
REFERENCES .................................................................................................................. 17 

LIST OF TABLES 

Table 2-1. Summary of parameters used in recent coseismic landslide ...................... 5 

Table 2-2. Summary of parameters used for this study. .............................................. 6 

Table 3-1. Expected landslides for Bhutan earthquake scenario events. ................... 11 

LIST OF FIGURES 

Figure 2-1. Overview of methodology for creating a regional coseismic landslide 
susceptibility map for Bhutan. .................................................................... 7 

LIST OF APPENDICES 

APPENDIX A DETAILED METHODOLOGY 

LIST OF DRAWINGS 

DRAWING 001 Results for M7 Earthquake Scenario 

DRAWING 002 Results for M8 Earthquake Scenario 



GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 1 

BGC ENGINEERING INC. 

1.0 INTRODUCTION 

BGC Engineering Inc. (BGC), in partnership with GeoHazards International (GHI), has developed 
a regional coseismic landslide susceptibility model and map (the map) for the Kingdom of Bhutan 
(Bhutan), which considers seismic shaking data for two different earthquake scenarios generated 
for GHI by Verisk Analytics.  

A regional coseismic landslide susceptibility model estimates landslide likelihood given the 
occurrence of specific degrees of shaking from an earthquake. Maps are an output of the model, 
and display expected spatial landslide distribution associated with an earthquake. The intended 
use of such a model and map for Bhutan is to inform work by authorities and practitioners related 
to country-scale land use planning, development regulation, and emergency management in 
terrain prone to seismic-triggered landslides. Specifically, the work is intended to inform where 
landslides may be more or less likely to occur during the earthquake scenarios considered in this 
study – information that can support regional to country-scale risk management decision making. 

The main document of this report summarizes the study objectives, methods, results, and 
limitations at a level of detail intended for authorities and practitioners. Appendix A provides a 
more detailed and quantitative description of the work for subject matter experts. 

BGC notes that the results of this study could be presented in different formats depending on the 
use-case. BGC intends to present this work to GHI, subject matter experts and authorities within 
Bhutan to develop an understanding of the intended use-cases and, if necessary, reformat the 
results to suit the needs of the end-users. 

1.1. Study Area 

The Kingdom of Bhutan is in a mountainous and seismically active region. It is a landlocked nation 
in the Eastern Himalayas, sharing borders with India to the south and east and Tibet to the north. 
The Bhutanese people live with a heightened sense of awareness of the seismically induced 
hazards following the 2015 Gorkha Earthquake in Nepal. This devastating earthquake had a 
moment magnitude of 7.8 and was caused by a thrust along the Main Himalayan Fault, which is 
the fault carrying the Indian Plate under the Eurasian Plate along both the Nepalese and 
Bhutanese southern borders. Due to its location in an active seismic zone, steep sloping terrain, 
and variable climatic conditions, Bhutan is prone to a wide spectrum of natural hazards including 
landslides, snow avalanches, floods, and seismic events.  

1.2. Scope of Work 

The scope of work was outlined in a proposal submitted to GHI by BGC on February 23, 2021. 
The technical aspects of the work were broadly divided into three tasks, which are described 
briefly as follows: 

• Task 1: Data compilation and data review. 
○ Characterization of the study area by reviewing existing reports, geology, terrain, 

landslide, climate, seismic, and hydrologic information, and compiling 
remotely-sensed (e.g., LiDAR and air photos) and basemap data in GIS format. 



GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 2 

BGC ENGINEERING INC. 

○ Compilation of data and baseline analyses required for assessment. This includes 
topographic, terrain, hydrologic, seismic, geomorphologic analyses, and 
consideration of climate change impacts. 

• Task 2: Model Development. 
○ Completion of landslide susceptibility mapping using a range of conventional 

statistical methods and machine learning approaches.  
○ Generation of Model Outputs. 
○ Validation of Model Results. 

• Task 3: Reporting. 
○ Dissemination of co-seismic landslide susceptibility maps and data in digital (PDF) 

and web-accessible format (Cambio Communities) amenable to incorporation into 
policy and risk-informed decision making. 

○ Presentation of results to Bhutan authorities, subject matter experts and GHI.  
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2.0 METHODOLOGY 

2.1. Modelling Approach 

The purpose of coseismic landslide susceptibility modelling is to illustrate landslide likelihood 
given the occurrence of specific degrees of shaking from an earthquake. To produce this output, 
a data-driven model was developed that ingests geospatial data representing coseismic 
landslides, the seismic data associated with their respective earthquake events (i.e., USGS 
shakemap), and a range of topographic, geologic, and thematic data. These data are used within 
the model to find relationships between ground shaking, terrain conditions, and earthquake-
triggered landslide occurrence, and the map is an output of the model. 

Reichenbach et al. (2018) provide a start of the art review of statistical methods for landslide 
susceptibility mapping, including a thorough discussion of the selection of explanatory variables 
to be considered for use in the model. With that framework in mind, we consulted a range of 
recent literature focusing on coseismic landslide susceptibility maps and completed a survey of 
variables used in recent models. Our findings are summarized in Table 2-1, which was generated 
from a review of 11 recent coseismic landslide susceptibility studies. 

There are many published studies that examine the relationship between parameters such as 
those listed in Table 2-1 and coseismic landslides at the regional scale (e.g., encompassing all or 
part of a country). However, the model developed for this study is at a global-scale. Spatial 
datasets containing inventories of coseismic landslides are relatively scarce, especially when 
considering a single region. Therefore, the benefit to the global-scale model approach is that one 
can leverage all available data, rather than only data for a specific region. This benefit needs to 
be balanced with careful consideration of the potential for variability in local conditions that are 
indicative of coseismic landsliding. Nowicki Jesse et al (2018) developed a global-scale coseismic 
landslide susceptibility model that uses a linear regression technique. The Nowicki Jesse et al. 
(2018) model was approximately replicated for this study, in addition to development of a tree-
based machine learning model and a weights of evidence model, as discussed in greater detail 
in Appendix A.  

Development of a landslide susceptibility map can be completed by a range of methods, including 
deterministic (i.e., slope stability analysis), heuristic (i.e., spatial factors weighted and combined 
according to judgement), inventory-based (i.e., considering solely the spatial distribution of 
mapped landslides) and statistical (i.e., comparison of mapped landslides with other spatial data 
to develop relationships and combine them to produce a map). These methods generally produce 
a map with a unitless numerical scale ranging between arbitrary lower and upper values 
representing the likelihood of ground movement given an earthquake event. These values can be 
reclassified into a smaller number of classes with specific statistical meaning and translated to 
qualitative expressions of hazard likelihood (e.g., high, medium, low). Where sufficient data are 
available, they may also be transformed to give an estimate of the spatial frequency of landslide 
presence across the map. 



GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 4 

BGC ENGINEERING INC. 

Table 2-2 provides an overview of the datasets considered within the model developed for this 
study. There are no coseismic landslide inventories available for Bhutan, and so the model could 
not be validated directly for Bhutan. As the best approximate proxy, the magnitude 7.8 earthquake 
that occurred in Nepal on April 25, 2015 was selected (the ‘Gorkha’ event). This event was left 
out of all model training, validation, and testing steps. The accuracy of the model as applied to 
this case is thought to be the best approximation for how the same model could perform for an 
earthquake occurring in Bhutan given the model had not included any Bhutanese or Nepalese 
data during training. The purpose of this approach is to first build confidence in the model within 
the Himalayan Region before applying the model to earthquake scenarios for the Kingdom of 
Bhutan and producing coseismic landslide susceptibility maps for use by Bhutanese Authorities, 
GHI or other parties. 
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Table 2-1. Summary of parameters used in recent coseismic landslide susceptibility studies. 
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PGA      ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ 
Fault 
distance  ✓           ✓   ✓ ✓       
Peak Ground 
Velocity 
(PGV)         ✓   ✓ ✓     ✓   ✓ 
Epicentral 
distance                    ✓       
Magnitude          ✓           ✓     
Modified 
Mercalli Index         ✓     ✓     ✓   ✓ 
Elevation  ✓   ✓   ✓   ✓   ✓ ✓     ✓ 
Slope angle  ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Aspect  ✓   ✓ ✓         ✓ ✓     ✓ 
Local relief  ✓         ✓ ✓ ✓     ✓ ✓ ✓ 
Profile 
curvature  ✓         ✓   ✓   ✓ ✓   ✓ 
Plan 
curvature  ✓         ✓   ✓   ✓     ✓ 
Roughness ✓         ✓   ✓     ✓     
Precipitation   ✓                     ✓ 
Wetness  ✓       ✓     ✓     ✓   ✓ 
Distance to 
Watercourse       ✓   ✓       ✓ ✓     
Lithology ✓     ✓ ✓   ✓   ✓ ✓   ✓ ✓ 
Landcover       ✓ ✓       ✓       ✓ 
Distance to 
Roads ✓               ✓ ✓       
Geomorphon 
class  ✓             ✓           
Soil Type ✓     ✓                   
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Figure 2-1 provides a high-level overview of the study workflow. An overview of the coseismic 
landslide databases used within the model and a detailed summary of the model workflow and 
validation are provided in Appendix A. Once the relationships between physiographic setting and 
landslide occurrence were quantified using this model, they were then applied to the regional 
scale to produce estimated susceptibility as a function of the local Bhutanese physiographic 
setting. Section 4.0 discusses implications of the resolution of input parameters used for this 
study. 

Table 2-2. Summary of parameters used for this study. 

Category Variable Data Type Source Spatial Resolution 

Seismic 
Derivatives 

Peak Ground Acceleration 
(PGA) 

Continuous 
raster 

USGS ShakeMap 
System (Worden 
& Wald, 2016) 

1 km Peak Ground Velocity (PGV) 

Modified Mercalli Intensity 
(MMI) 

Topographic 
Derivatives 

Elevation 

Continuous 
raster 

Shuttle Radar 
Topography 
Mission 

30 m 

Slope Angle 

Relative Slope Aspect1 

Local Relief 

Curvature (plan, profile, 
combined) 

Compound Topographic Index 

Precipitation Average Annual Precipitation Continuous 
raster 

WorldClim Mean 
Monthly 
Precipitation 

30 arc-seconds 

Aridity 

Annual average reference 
evapotranspiration Continuous 

raster 
Trabucco and 
Zomer (2018) 

30 arc-seconds 

Annual average aridity index 

Vegetative 
cover 

Percentage green vegetation 
cover 

Continuous 
Raster 

Broxton, Zeng, 
Scheftic, and 
Troch (2014) 

30 arc-seconds 

Lithology GLiM Global Lithology Data 
15-class 
categorical 
vector 

Hartmann and 
Moosdorf (2012) 

Extracted from a 
vector dataset 
(approximately 
1:1,000,000 scale) 

Landcover Globecover 2009 Landcover 
20-class 
categorical 
raster 

Arino et al. (2012) 300 m  

Notes: 
1. Relative Aspect is a measure of the slope aspect for a given point relative to the location of the earthquake epicentre 
2. Compound Topographic Index is a measure of topographic wetness calculated by applying hydrologic principles to the 

interpretation of topographic data 
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Figure 2-1. Overview of methodology for creating a regional coseismic landslide susceptibility map 

for Bhutan. 

2.2. Earthquake Scenarios 

Two earthquake scenarios provided by Verisk Analytics were tested for this study. According to 
information provided by GHI, one scenario earthquake is a M7 occurring along the Dhubri-
Chungthang right-lateral strike slip fault in Southwestern Bhutan. This scenario was modeled after 
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a 1980 M6.3 earthquake that occurred at a depth of 45 km. The M7 scenario earthquake is 
interpreted to occur along the same fault zone but at a shallower depth, occurring at 12 km and 
rupturing to the surface, as this could be a potentially more damaging example of an earthquake 
for southwestern Bhutan.  

The second scenario earthquake is a M8 that represents a hypothetical repeat of the 1714 ~M8 
earthquake along the Main Himalayan Thrust fault along the southern border of Bhutan. This 
scenario is estimated to occur at a depth of 10 km and with a northerly dip of 10 degrees, rupturing 
the fault from the surface to a depth of 20 km. 
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3.0 RESULTS 

Drawing 001 and Drawing 002 (attached) present the results as a country-scale co-seismic 
landslide hazard susceptibility map for two earthquake scanrios. For greater ease of navigation, 
BGC also presents the map on a web application, Cambio, which can be accessed at 
www.cambiocommunities.ca. New users will need to click “register for access” to obtain login 
information. BGC has also provided map data in a separate file as an ESRI Geodatabase. The 
map portrays landslide susceptibility as function of number of expected landslides per unit area. 
Drawing 001 and Drawing 002 are provided at 1:2,000,000 scale. The web version provided on 
Cambio is intended to be viewed at province to country scale; the results should not be relied 
upon at the scale of specific assets. 

Appendix A provides a detailed account of the modelling methodology, interpretation of the model 
outputs and their intended use. Key technical findings of the work summarized in Appendix A 
include: 

• Model performance for the Logistic Regression (LR) and Light Gradient Boosted Machine 
(LGBM) models has been evaluated qualitatively, through visual inspection, and 
quantitatively through the use of balanced accuracy metrics and area under the receiver 
operating characteristic curves: 

○ Model performance is shown to be generally good, comparable to and better than 
that of the United States Geological Survey (USGS) models based on coarser 
topographic data.  

○ Optimum decision thresholds vary proportional to earthquake magnitude and 
associated ground shaking parameters (i.e., PGA, PGV and MMI). 

○ Model performance may vary across the range of model earthquake events, and 
models may need to be adjusted for local considerations to optimize them for use 
in a specific region. 

• With consideration of the 2010 Haiti M7.0 earthquake, which was included as a validation 
case for the model: 

○ Our LGBM, LR and WoE models outperform three results available from USGS, 
including that based on the work of Nowicki Jessee et al. (2018). An ensemble 
model that combines the LGBM, LR and Weights of Eveidenc (WoE) models in 
equal weight also outperforms the USGS models. 

○ An estimate of spatial density of landslides from the event produces a lower 
estimate (average estimate of 3,560 landslides) than the number (i.e., 23,568) 
documented by Harp et al. (2017). 

• With consideration of the 2015 Gorkha (Nepal) M7.8 earthquake, which was not included 
in training/developing the model but was used to test the model's ability to accurately 
predict the landslides that occurred during the earthquake. 

○ All BGC models (i.e., LGBM, LR, WoE and an ensemble model) outperform the 
USGS models by a wide margin. 

○ An estimate of spatial density of landslides from the event by our model produces 
similar estimates (range from 29,032 to 62,359 landslides) to those (i.e., 24,795) 

http://www.cambiocommunities.ca/
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documented by Roback et al. (2017). This good agreement gives us high 
confidence in the model’s predictive power for nearby Bhutan with similar terrain. 

3.1. Key Findings: Model Output for Bhutan Earthquake Scenarios 

For the Kingdom of Bhutan, we considered a M6.1 earthquake in eastern Bhutan from 2009 plus 
two scenario earthquakes with available PGA shakemaps and found: 

• For the M6.1 event our most confident prediction, based on the WoE model, is for 
18 landslides1 nation-wide, 5 along roads which includes 1 along national highways.  

• For the M7 scenario, we expect from 754 to 3,649 landslides nation-wide, concentrated 
near the source fault along the west border of Bhutan. Of these, 20 to 56 landslides are 
expected to occur within 200 m of national highways. 

• For the M8 scenario, we expect from 35,873 to 40,885 landslides nation-wide, 
concentrated in the southern half of Bhutan. Of these, 604 to 1,150 landslides are 
expected to occur within 200 m of national highways.  

These results are summarized in Table 3-1 below, where we summarize estimates for landslides 
in Bhutan associated with the three different earthquake scenarios under consideration, for each 
considered model. We distinguish between the total numbers of landslides expected across the 
whole Kingdom of Bhutan and those to be found within 200 m (i.e., 400 m wide corridor) along 
roads or national highways. 

Landslide predictions for the whole of Bhutan for the M8 scenario earthquake range between 
35,873 and 40,885. We may therefore expect that a M8 earthquake occurring along the southern 
border would likely produce widespread landslides, being potentially more widespread than those 
in Nepal following the 2015 Gorkha event. By contrast, the M7 scenario is expected to produce 
an order of magnitude fewer landslides, with an ensemble model forecast of 2,196 landslides, of 
which 38 are expected along national highway corridors.  

 
1 At the resolution of study, the model is not able to differentiate between landslide types. Landslide point 

locations identified at the scale of the model do not represent landslide extent or failure characteristics 
(e.g., multiple points of rockfall detachment, or slope failure within a larger landslide complex). 
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Table 3-1. Expected landslides for Bhutan earthquake scenario events. 

Event Model 
Estimated Number of Landslides 

Whole Bhutan All roads 
(within 200 m) 

National Highways 
(within 200 m) 

2009 M6.1 

Ensemble 263 26 6 

WoE 18 5 1 

LGBM 222 29 6 

LR 548 44 11 

M7 
Scenario 

Ensemble (PGA only) 2196 144 38 

LR (PGA only) 3649 200 56 

WoE (PGA only) 754 88 20 

M8 
Scenario 

Ensemble (PGA only) 38334 3998 877 

LR (PGA only) 35873 2716 604 

WoE (PGA only) 40885 5292 1150 
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4.0 INTENDED USE OF THE MODEL OUTPUT 

4.1. Interpretation of the Model Results 

The results of this modelling work show that existing USGS global models for coseismic landslide 
susceptibility can be improved through the use of higher resolution topographic data, the inclusion 
of additional explanatory variables, and the use of a range of analytical models. We consider that 
this work has been successful in its initial objective to build on the work of Nowicki Jessee et al. 
(2018) to obtain a global model with higher predictive power.  

Any global model has certain advantages and disadvantages. An advantage is that it can be 
applied anywhere in the world in the event of a potentially landslide-producing earthquake, without 
the need to build a new custom model for a specific area under time pressure following an event. 
A potential disadvantage of a global model is that it is based on observed landslides and terrain 
conditions from across the globe, and therefore represents an average model, that may be 
relatively good everywhere, but with potentially high variability in predictive power for specific 
locations. A global model’s results may be very poor in areas where the average terrain 
characteristics are significantly different than the average characteristics for events included in 
the model. In the present work, we see that our models are somewhat better than USGS models 
for a 2010 Haiti earthquake, and much better for the 2015 Gorhka, Nepal earthquake, based on 
the statistical evaluation provided in Appendix A. We also see that our predictions for expected 
number of landslides are relatively poorly aligned for the Haiti event and very good for the Nepal 
event, relative to available inventories of mapped landslides. Further detailed examination of 
model performance across the range of events included in our models is expected to show 
variable model performance. Given the models’ good performance for Nepal, we expect 
similar good performance for nearby Bhutan, based on its similar geology and 
physiography, at least for the mountainous areas of northern Bhutan. 

The models produced in this work are intended to be used at a national scale in Bhutan, with the 
following intended uses: 

• Education and awareness  
• Disaster response planning 
• Prioritization of more detailed region-specific or site-specific study. 

4.2. Model Limitations 

The models have been developed with a nominal resolution of 30 m. This resolution is based 
on that of the topographic data set, which is the highest resolution data included in the model. 
The practical resolution of the model may be as poor as the lowest resolution dataset included in 
the model, which is a 1 km grid for the seismic load parameters included in the USGS shakemaps. 
Among the terrain variables, which are static, remaining unchanged with changes in earthquake 
load, several inputs (i.e., precipitation, aridity and vegetative cover) have a resolution of 30 arc 
seconds, which can be as long as ~ 900 m near the equator. The global land cover model has a 
resolution of 300 m. The practical resolution of the model is therefore between 30 m and 1 km, 
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with 500 m perhaps representing a reasonable best estimate. We consider that the model is useful 
at a global or national scale for identifying wide trends but should not be used at larger (more 
detailed) scale. Very limited meaning, if any, can be taken from the map for any area smaller 
than about 500 m by 500 m. Region-specific maps may have potential for improvement with the 
benefit of larger scale (higher resolution) input data for lithology, land cover, soil moisture or other 
terrain characteristics. 

A landslide susceptibility map developed using statistical methods with the benefit of an existing 
landslide inventory gives an estimate of the expected spatial distribution of landslides across the 
map. It gives no information on temporal probability, or the expected frequency of landslides in 
time; rather it only tells where, in space, landslides are more or less likely. The results of this study 
therefore help understand where landslides may occur following a specific earthquake with known 
location and magnitude, but they give no insight as to where or when a landslide-triggering 
earthquake may occur.  

The coseismic landslide susceptibility models presented in this report give a forecast of 
expected landslide distribution, in space, associated with a specific earthquake event. The 
model is specific to a given earthquake scenario and does not apply to any other earthquake. 
That said, a significant proportion of the model – that associated with unchanging terrain 
conditions - remains constant across models for all earthquake events; only the seismic load 
component of the model is event-specific. The model can be re-run for any other scenario 
earthquake event with an available Shakemap, including any future earthquake affecting Bhutan 
for which USGS publishes a Shakemap. For this exercise, the model was tested using two 
earthquake scenarios that were provided by a third party, however, other earthquake scenarios 
are possible within Bhutan.  

The models are unable to distinguish between different landslide types. The model training 
data are generally unspecific about landslide type, and where sub-classification data are 
available, they are classified inconsistently across datasets. The models therefore only predict 
relative likelihood of a non-specific landslide type to occur. This may conceal important differences 
in landslide likelihood across the range of landslide types. This means that the landslides triggered 
by earthquakes as modelled for this study could include a broad range of gravitational slope 
failures including, for example, rockfall, rockslide, earth slide and debris slide.  

4.3. Potential Model Improvements 

This project has produced a coseismic landslide susceptibility model that was used to produce 
coseismic landslide susceptibility maps for specific earthquake scenarios for the Kingdom of 
Bhutan. BGC makes the following recommendations for future work to improve the model results: 

1. Include more events in the model training: 25 earthquake events with landslide 
inventory data were included in this model. Increasing the number of examples that the 
model is given may improve its performance.  

2. Allow for different weighting of events: Events were taken from all around the world, 
and when running the model for a specific area for Bhutan, one might expect 
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improvements if events and areas more like Bhutan are weighted more heavily during the 
model training.  

3. Proximity to road cuts: One feature that may help to explain the presence of coseismic 
landslides would be proximity to road cuts or other similar features where anthropogenic 
steepening has occurred. This type of information should be included in the model where 
possible.  

4. Include features that account for position relative to the fault: Experience in the 
literature suggests that one could expect more landslides to occur with different likelihood 
on the hanging wall of the fault as compared with the foot wall. Including this may help 
reduce false positive rates in the model. 

5. Include information about antecedent soil moisture conditions: It is likely that soil 
moisture has played some role in the documented occurrence of coseismic landslides. 
Presently, it is challenging to compile this information given geographic and temporal 
extents of the inventories, but the relationship between antecedent precipitation and 
coseismic landslides could be explored for more the recent inventories with the benefit of 
satellite-based soil moisture models. Future development of this model could explore the 
inclusion of moisture conditions leading up to a particular earthquake event.  

6. Include PGV and MMI in results for Bhutan scenario earthquakes: Both PGA and 
PGV were shown to be important predictors for the LR and LGBM coseismic landslide 
model, and MMI was also important in the WoE model. Performance for models with only 
PGA was worse in the global validation. Currently, only PGA is computed for the M7 and 
M8 earthquake scenarios in Bhutan. It is recommended that both PGA and PGV be 
produced for those earthquake scenarios in Bhutan to provide a better basis for scenario-
based landslide models. 

7. Include higher resolution regional data. It may be possible to improve on the model for 
Bhutan by including larger scale data for factors like lithology and land cover in place of 
global data sets. Such a substitution would require some degree of judgement in place of 
statistical analysis, since those data could not be compared to the other globally available 
event data. This would introduce some uncertainty in the model, but possibly with the 
benefit of improved predictive power. 

8. Compile coseismic landslide data for the Kingdom of Bhutan. As noted, the model 
was not calibrated within Bhutan because of a lack of available data, however, if such data 
does exist it could be used to further calibrate the model for use in Bhutan.  
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5.0 RECOMMENDATIONS 

BGC makes the following recommendations for future work to improve the use of results in 
decision making: 

1. Compare results to building locations, settlements or infrastructure to prioritize 
further assessment. Hazard exposure assessment could help focus further analyses to 
improve the model results in higher priority areas, such as individual buildings, settlements 
or hillsides. Moreover, these results can be used to help Bhutanese authorities to decide 
where more detailed site assessment is required prior to development or other investment 
in a given location.  

2. Develop a plan to incorporate results into planning, policy, and emergency 
management. BGC suggests that the results of this work be considered alongside other 
geohazards present within Bhutan (e.g., floods, precipitation-triggered landslides, and 
wildfires) in a framework for geohazard risk management. Such work might also include 
the preparation of hazard maps in formats intended for use in land use regulation. The 
results of this study can be used at a high level for planning where settlements and other 
development investments would minimize exposure to co-seismic landslide hazards, and 
such decisions could be incorporated into land use policy, for example.  
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6.0 CLOSURE 

BGC Engineering Inc. (BGC) prepared this document for the account of GeoHazards 
International. The material in it reflects the judgment of BGC staff in light of the information 
available to BGC at the time of document preparation. Any use which a third party makes of this 
document or any reliance on decisions to be based on it is the responsibility of such third parties. 
BGC accepts no responsibility for damages, if any, suffered by any third party as a result of 
decisions made or actions based on this document. 

As a mutual protection to our client, the public, and ourselves all documents and drawings are 
submitted for the confidential information of our client for a specific project. Authorization for any 
use and/or publication of this document or any data, statements, conclusions or abstracts from or 
regarding our documents and drawings, through any form of print or electronic media, including 
without limitation, posting or reproduction of same on any website, is reserved pending BGC’s 
written approval. A record copy of this document is on file at BGC. That copy takes precedence 
over any other copy or reproduction of this document. 

Yours sincerely, 

BGC ENGINEERING INC. 
per: 

Richard Carter, M.Sc. Pete Quinn, Ph.D., P.Eng. 
Geohazard Specialist Principal Geotechnical Engineer 

Rudy Schueder, M.A.Sc., EIT 
Data Scientist 

Reviewed by: 

Kris Holm, M.Sc., P.Geo.  Autumn Umanetz, M.ASc., P.Eng. 
Principal Geoscientist Data Scientist 

RC/AU/mjp/mm 



GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 17 

BGC ENGINEERING INC. 

REFERENCES 

Alfaro, P., Delgado, J., Garcia-Tortosa, F. J., Lenti, L., Lopez, J. A., Lopez-Casado, C., & Martino, 
S. (2012). Widespread landslides induced by the Mw 5.1 earthquake of 11 May 2011 in Lorca, 
SE Spain [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://www.sciencebase.gov/catalog/item/5b5a11e7e4b0610d7f4dcb7c. 

Arino, O., Ramos P., Jose J., Kalogirou, V., Bontemps, S., Defourny, P, Van Bogaert, E. 
(2012): Global Land Cover Map for 2009 (GlobCover 2009). © European Space Agency 
(ESA) & Université catholique de Louvain 
(UCL), PANGAEA, https://doi.org/10.1594/PANGAEA.787668 

Amato, G., Fiorucci, M., Martino, S., Lombardo, L., & Palombi, L. (n.d.). Earthquake-triggered 
landslide susceptibility in Italy by means of Artificial Neural Network. 

Bonham-Carter, G.F., Agterberg, F.P, & Wright, D.F. (1989). Weights of evidence modelling: a 
new approach to mapping mineral potential. In F.P Agterberg & G.F. Bonham-Carter (Eds.), 
Statistical applications in the earth sciences (Geological Survey of Canada Paper 89-9, pp. 
171-183). Ottawa, Ontario: Geological Survey of Canada. 

Broxton, P. D., Zeng, X., Scheftic, W., & Troch, P. A. (2014). A MODIS-based global 1-km 
maximum green vegetation fraction dataset. Journal of Applied Meteorology and 
Climatology, 53(8), 1996-2004. https://doi.org/10.1175/JAMC-D-13-0356.1 

Casagli, N., Intrieri, E., Carlà, T., di Traglia, F., Frodella, W., Gigli, G., Lombardi, L., Nocentini, M., 
Raspini, F., & Tofani, V. (2021). Monitoring and Early Warning Systems: Applications and 
Perspectives (pp. 1–21). https://doi.org/10.1007/978-3-030-60311-3_1 

Cauzzi, C., Fäh, D., David, •, Wald, J., Clinton, J., Losey, S., & Wiemer, S. (n.d.). ShakeMap-
based prediction of earthquake-induced mass movements in Switzerland calibrated on 
historical observations. Natural Hazards. https://doi.org/10.1007/s11069-018 

Chen, S., Miao, Z., Wu, L., Zhang, A., Li, Q., & He, Y. (2021). A One-Class-Classifier-Based 
Negative Data Generation Method for Rapid Earthquake-Induced Landslide Susceptibility 
Mapping. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.609896 

Gnyawali, K.R., & Adhikari, B.R. (2017). Earthquake induced landslides triggered by 2015 Gorkha 
earthquake Mw 7.8 [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7028Q2X. 

Gorum, T., Korup, O., van Westen, C. J., van der Meijde, M., Xu, C., & van der Meer, F. D. (2017). 
Landslides triggered by the 2002 Denali earthquake, Alaska [GIS data]. Retrieved from the 
U.S. Geological Survey website: https://doi.org/10.5066/F7G73C76. 

Gorum, T., Korup, O., van Westen, C. J., van der Meijde, M., Xu, C., & van der Meer, F. D. (2017). 
Landslides triggered by the 2007 M 6.2 Aisen, Chile earthquake [GIS data]. Retrieved from 
the U.S. Geological Survey website: https://doi.org/10.5066/F7125R5V. 

https://www.sciencebase.gov/catalog/item/5b5a11e7e4b0610d7f4dcb7c
https://doi.pangaea.de/10.1594/PANGAEA.787668
https://doi.org/10.1594/PANGAEA.787668
https://doi.org/10.1007/978-3-030-60311-3_1
https://doi.org/10.1007/s11069-018
https://doi.org/10.5066/F7028Q2X
https://doi.org/10.5066/F7G73C76
https://doi.org/10.5066/F7125R5V


GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 18 

BGC ENGINEERING INC. 

Harp, E.L., Hartzell, S.H., Jibson, R.W., Ramirez-Guzman, L., & Schmitt, R.G. (2017). Landslides 
triggered by the October 15, 2006, M 6.7 Kiholo Bay, Hawaii, earthquake [GIS data]. Retrieved 
from the U.S. Geological Survey website: https://doi.org/10.5066/F74Q7SH0. 

Harp, E.L., & Jibson, R.W. (2017). Inventory of landslides triggered by the 1994 Northridge, 
California earthquake [GIS data]. Retrieved from U.S. Geological Survey website: 
https://doi.org/10.5066/F7Z60MKF. 

Harp, E.L., Jibson, R.W., & Schmitt, R.G. (2017). Map of landslides triggered by the January 12, 
2010, Haiti earthquake [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7C827SR. 

Harp, E.L., & Keefer, D.K. (2017). Landslides triggered by the Coalinga, California, earthquake of 
May 2, 1983 [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7G73C76. 

Harp, E.L., Wilson, R.C., & Wieczorek, G.F. (2017). Landslides from the February 4, 1976, 
Guatemala earthquake [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7VD6X0Z. 

Hartmann, J.,  Moosdorf, N. (2012): The new global lithological map database GLiM: A 
representation of rock properties at the Earth surface. Geochemistry, Geophysics, 
Geosystems, 13, Q12004, https://doi.org/10.1029/2012GC004370 

Keefer, D.K., & Manson, M.W. (2017). Landslides generated by the Loma Prieta, California, 
earthquake of October 17, 1989 [GIS data]. Retrieved from the U.S. Geological Survey 
website: https://doi.org/10.5066/F76Q1VR9. 

Lombardo, L., & Tanyas, H. (2020). From scenario-based seismic hazard to scenario-based 
landslide hazard: fast-forwarding to the future via statistical simulations. 
http://arxiv.org/abs/2004.00537 

Martino, S., Prestininzi, A., & Romeo,R.W. (2014). Earthquake-induced ground failures in Italy 
from a reviewed database [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://www.sciencebase.gov/catalog/item/5b6b26b0e4b006a11f779680. 

Martino, S., Prestininzi, A., & Romeo,R.W. (2014) Earthquake-induced ground failures in Italy 
from a reviewed database [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://www.sciencebase.gov/catalog/item/5b5f6a4be4b006a11f66ece9. 

Massey, C. I., Townsend, D. T., Lukovic, B., Morgenstern, R., Jones, K., Rosser, B., & de Vilder, 
S. (2020). Landslides triggered by the MW7.8 14 November 2016 Kaikōura earthquake: an 
update. Landslides, 17(10), 2401–2408. https://doi.org/10.1007/s10346-020-01439-x 

Ministerio de Medio Ambiente y Recursos Naturales, El Salvador. (2017). Landslide inventory for 
the February 13, 2001, San Salvador, El Salvador earthquake [GIS data]. Retrieved from the 
U.S. Geological Survey website: https://doi.org/10.5066/F7K072SP. 

https://doi.org/10.5066/F74Q7SH0
https://doi.org/10.5066/F7Z60MKF
https://doi.org/10.5066/F7G73C76
https://doi.org/10.5066/F7VD6X0Z
https://doi.pangaea.de/10.1594/PANGAEA.788537
https://doi.pangaea.de/10.1594/PANGAEA.788537
https://doi.org/10.1029/2012GC004370
https://doi.org/10.5066/F76Q1VR9
https://www.sciencebase.gov/catalog/item/5b5f6a4be4b006a11f66ece9
https://doi.org/10.1007/s10346-020-01439-x
https://doi.org/10.5066/F7K072SP


GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 19 

BGC ENGINEERING INC. 

Morton, D.M. (2017). Seismically triggered landslides in the area above the San Fernando Valley 
[GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7057DFS.  

Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S. M., Tanyas, H., 
Hearne, M., & Thompson, E. M. (2018). A Global Empirical Model for Near-Real-Time 
Assessment of Seismically Induced Landslides. Journal of Geophysical Research: Earth 
Surface, 123(8), 1835–1859. https://doi.org/10.1029/2017JF004494 

Papathanassiou, G. Valkaniotis, S. Ganas, A. & Pavlides, S. (2017). Earthquake-induced 
landslides in the island of Lefkada, Ionian Islands, Greece [GIS data]. Retrieved from the U.S. 
Geological Survey website: https://doi.org/10.5066/F79G5K96. 

Polykretis, C., Kalogeropoulos, K., Andreopoulos, P., Faka, A., Tsatsaris, A., & Chalkias, C. 
(2019). Comparison of statistical analysis models for susceptibility assessment of earthquake-
triggered landslides: A case study from 2015 earthquake in Lefkada Island. Geosciences 
(Switzerland), 9(8). https://doi.org/10.3390/geosciences9080350 

Reichenbach, P., Rossi, M., Malamud, B.D, Mihir, M., & Guzzetti, F. (2018). A review of 
statistically-based landslide susceptibility models. Earth Science Reviews, 180 (2018), 60-91. 
https://doi.org/10.1016/j.earscirev.2018.03.001. 

Roback, K., Clark, M.K., West, A.J., Zekkos, D., Li, G., Gallen, S.F., … & Godt, J.W. (2017). Map 
data of landslides triggered by the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake [GIS data]. 
Retrieved from the U.S. Geological Survey website: https://doi.org/10.5066/F7DZ06F9.  

Rymer, M. J. (1987). Landslides triggered by the San Salvador earthquake of October 10, 1986 
[GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7BG2MHG. 

Sato, H.P., Hasegawa, H., Fujiwara, S., Tobita, M., Koarai, M., Une, H., & Iwahashi, J. (2017). 
Landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 
imagery [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7SJ1J42.  

Sekiguchi, T., & Sato, H.P. (2017). Feature and distribution of landslides induced by the Mid 
Niigata Prefecture earthquake in 2004 Japan [GIS data]. Retrieved from the U.S. Geological 
Survey website: https://doi.org/10.5066/F7X928TX. 

Shao, X., Ma, S., Xu, C., & Zhou, Q. (2020). Effects of sampling intensity and non-slide/slide 
sample ratio on the occurrence probability of coseismic landslides. Geomorphology, 363. 
https://doi.org/10.1016/j.geomorph.2020.107222 

Tanyaş, H., & Lombardo, L. (2019). Variation in landslide-affected area under the control of 
ground motion and topography. Engineering Geology, 260. 
https://doi.org/10.1016/j.enggeo.2019.105229 

https://doi.org/10.5066/F79G5K96
https://doi.org/10.3390/geosciences9080350
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.5066/F7BG2MHG
https://doi.org/10.5066/F7X928TX
https://doi.org/10.1016/j.geomorph.2020.107222
https://doi.org/10.1016/j.enggeo.2019.105229


GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan Project No.: BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan Page 20 

BGC ENGINEERING INC. 

Tanyaş, H., van Westen, C. J., Persello, C., & Alvioli, M. (2019). Rapid prediction of the magnitude 
scale of landslide events triggered by an earthquake. Landslides, 16(4), 661–676. 
https://doi.org/10.1007/s10346-019-01136-4 

Trabucco, A. & Zomer, R.J. (2018). Global Aridity Index and Potential Evapo-Transpiration (ET0) 
Climate Database v2. CGIAR Consortium for Spatial Information (CGIAR-CSI). Published 
online, available from the CGIAR-CSI GeoPortal at https://cgiarcsi.community  

Uchida, T., Kataoka, S., Iwao, T., Matsuo, O., Terada, H., Nakano, Y., … Osanai, N. (2017). 
Landslides triggered by the January 16, 1995, M 6.9 Kobe, Japan Earthquake [GIS data]. 
Retrieved from U.S. Geological Survey website: https://doi.org/10.5066/F7TH8K60. 

Wartman, J., Dunham, L., Tiwari, B., & Pradelm, D. (2017). Landslides in Eastern Honshu induced 
by the 2011 Tohoku earthquake [GIS data]. Retrieved from the U.S. Geological Survey 
website: https://doi.org/10.5066/F7G73C76. 

Worden, C.B., and Wald, D.J. (2016). ShakeMap Manual, http://dx.doi.org/10.5066/F7D21VPQ 

Xu, C., Xu, X., Shyu, J. B. H., Zheng, W., & Min, W. (2014). Landslides triggered by the July 22, 
2013 Minxian - Zhangxin, China, Mw 5.9 earthquake [GIS data]. Retrieved from the U.S. 
Geological Survey website: https://doi.org/10.5066/F7V986KM. 

Xu, C., Xu, X., Shen, L., Dou, S., Wu, S., Tian, Y., & Li, X. (2017). Inventory of landslides triggered 
by the 2014 Ms 6.5 Ludian earthquake [GIS data]. Retrieved from the U.S. Geological Survey 
website: https://doi.org/10.5066/F7QJ7FTF. 

Xu, C., Xu, X., & Shyu, J.B.H. (2017). Database and spatial distribution of landslides triggered by 
the Lushan, China Mw 6.6 earthquake of April 20, 2013 [GIS data]. Retrieved from the U.S. 
Geological Survey website: https://doi.org/10.5066/F7KS6Q2P. 

Xu, C., Xu, X., Yao, X., & Dai, F. (2017). Landslides triggered by the May 12, 2008, Wenchuan 
Mw 7.9 earthquake of China [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/F7RJ4H0P. 

Yagi, H., Sato, G., Higaki, D., Yamamoto, M., & Yamasaki, T. (2009). Distribution and 
characteristics of landslides induced by Iwate-Miyagi Nairiku Earthqake in 2008 in Tohoku 
district, Northeast Japan [GIS data]. Retrieved from the U.S. Geological Survey website: 
https://doi.org/10.5066/P9PRGNWR.  

Zhang, J., Liu, R., Deng, W., Khanal, N.R., Gurung, D.R., Murthy, M.S.R., & Wahid, S. (2017). 
Characteristics of landslides in Koshi River basin, Central Himalaya [GIS data]. Retrieved from 
the U.S. Geological Survey website: https://doi.org/10.5066/F73T9FQ1. 

https://cgiarcsi.community/
https://doi.org/10.5066/F7G73C76
https://doi.org/10.5066/F7V986KM
https://doi.org/10.5066/F7QJ7FTF
https://doi.org/10.5066/F7KS6Q2P
https://doi.org/10.5066/F7RJ4H0P


GeoHazards International May 27, 2022 
Co-Seismic Landslide SusceptIbility Map for the Kindgom of Bhutan BGC21006 

Report - Co-Seismic Landslide Sus Mapping - Bhutan  

BGC ENGINEERING INC. 

APPENDIX A 
DETAILED METHODOLOGY 



GeoHazards International May 27, 2022 
Co-seismic Landslide Susceptibility Map for the Kingdom of Bhutan Project No.: BGC21006 

Appendix A - Detailed Methodology_March24_version A-1 

BGC ENGINEERING INC. 

A.1. INTRODUCTION 

This appendix provides a detailed description of the methodology used to create and validate a 
coseismic landslide susceptibility map for Bhutan. It describes the collection of physiographic data 
associated with landslide events, and the ways in which landslide and non-landslide observations 
were sampled. It describes the models used, how they were trained, and how the model 
performance was evaluated. Finally, it shows the quantitative performance of the models across 
the various landslide events and provides example outputs of the coseismic landslide score maps 
generated by the models and their translation into susceptibility maps. 

A.2. METHODOLOGY 

A.2.1. Geospatial Data Collection 

A.2.1.1. Coseismic Landslide Inventories 

No known inventories of coseismic landslides for earthquakes in Bhutan are currently known to 
be available. Coseismic landslide inventories from around the world were compiled to capture as 
broad of a physiographic setting as possible. These inventories consisted of polygon or point 
geometries delineating the locations of mapped landslides associated with specific earthquake 
events. The methodologies employed in the creation of the inventories and the level of 
completeness was thought to vary across each inventory. For instance, in some inventories it was 
clear that only landslides visible from road-based reconnaissance were identified, whereas in 
other inventories it appeared that remote sensing imagery and potentially computer vision-based 
classification were used. The result is that the latter would be expected to offer more 
comprehensive coverage of the entire landslide population as compared to the former, which 
would be biased to landslides that occurred near roads (and therefore physiography conducive to 
roadbuilding and to anthropogenic contributors due to improved accessibility) and omitted 
landslides further into mountainous terrain. An additional limitation of some of the inventories was 
that the date of the event was so far in the past that current physiographic data may no longer be 
consistent with the environment in which the original landslides occurred. Table A-1 summarizes 
the coseismic databases used for this study. 
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Table A-1. Summary of coseismic landslide inventories considered within this study. 

Event Location Date Magnitude LS Data Type Number of 
Observations Reference 

Lorca, Spain May 11, 2011 5.1 Points 166 Alfaro et al. (2012) 

San Salvador, El Salvador October 10, 1986 5.7 Points 268 Rymer, 1987 

Minxian-Zhangxian, China July 21, 2013 5.9 Polygons 2330 Xu, Xu, Shyu, et al. (2014) 

AysenFjord, Chile April 21, 2007 6.2 Polygons 517 Gorum et al. (2014) 

Ludian, China August 3, 2014 6.2 Polygons 1024 Ying-Ying et al. (2015) 

Abruzzo, Italy April 6, 2009 6.3 Polygons 89 Piacentini et al. (2013) 

Lefkada, Greece August 14, 2003 6.3 Polygons 274 Papathanassiou et al. (2013) 

Friuli, Italy May 5, 1976 6.5 Points 1007 Govi 1977 

Niigata-Chuetsu, Japan October 23, 2004 6.6 Polygons 4615 Sekiguchi and Sato (2006) 

Lushan, China April 20, 2013 6.6 Polygons 15546 Xu et al. (2015) 

San Fernando, California February 2, 1971 6.6 Points 391 Morton, 1971 

El Salvador February 13, 2001 6.6 Points 62 Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2017) 

KiholoBay, Hawaii October 15, 2006 6.7 Polygons 383 Harp et al. (2014) 

Coalinga, California May 2, 1983 6.7 Polygons 3980 Harp and Keefer 1990 

Northridge, California January 17, 1994 6.7 Polygons 11111 Harp and Jibson (1996) 

Kobe, Japan January 16, 1995 6.9 Polygons 2353 Uchida et al. (2004) 

Iwate-Miyagi-Nairuku, Japan June 14, 2008 6.9 Polygons 4211 Yagi et al. (2009) 

Loma Prieta, California October 17, 1989 6.9 Points 528 Keefer and Manson (1998) 

Haiti January 12, 2010 7 Polygons 23567 Harp et al. (2016) 

Guatemala February 4, 1976 7.5 Polygons 6224 Harp et al 1977 

Kashmir, Pakistan October 8, 2005 7.6 Points 2424 Sato et al. (2007) 

Chi-Chi, Taiwan September 20, 1999 7.7 Polygons 9272 Liao and Lee (2000) 

Denali, Alaska November 3, 2002 7.9 Polygons 1579 Gorum et al. (2014) 

Wenchuan, China May 12, 2008 7.9 Polygons 197481 Xu, Xu, Yao, et al. (2014) 

Tohoku, Japan March 11, 2011 9.1 Polygons 3477 Wartman et al. (2013) 

Gorka, Nepal April 25, 2015 7.8 Points/Polygons 450921 Gnyawali et al (2016); Roback et al (2017); Zhang et al (2016) 
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A.2.1.2. Physiographic Variables 

To build a coseismic landslide susceptibility model it was necessary to collect information about 
the environment in which the landslides occurred. Various types of supplementary geospatial data 
were collected for the areas in the vicinity of each of the coseismic landslide events, where the 
vicinity for each event was defined as the extent of the associated United States Geological 
Service (USGS) Shakemap. The data collected for each event are shown in Table A-2. These 
variables were chosen based on knowledge of landslide mechanics and the availability of 
datasets at a global scale. Most of the chosen parameters have been used in previous studies 
reviewed for this work, including that of Nowicki Jessee et al. (2018). 

Table A-2. A summary of data collected considered for use as explanatory variables in the 
coseismic susceptibility model. 

Category Variable Data Type Source Spatial 
Resolution 

Seismic 
Derivatives 

Peak Ground 
Acceleration (PGA) 

Continuous raster 
USGS Shakemap 
System (Worden 
& Wald, 2016) 

1 km 
Peak Ground Velocity 
(PGV) 

Modified Mercalli 
Intensity (MMI) 

Topographic 
Derivatives 

Elevation 

Continuous raster 

Shuttle Radar 
Topography 
Mission (SRTM) 
Digital Elevation 
Model (DEM) 

30 m 

Slope Angle 

Relative Slope Aspect1 

Local Relief 

Curvature (plan, profile, 
combined) 

Compound 
Topographic Index 

Precipitation 
Average Annual 
Precipitation 

Continuous raster 
WorldClim Mean 
Monthly 
Precipitation 

30 arc-seconds 

Aridity 

Annual average 
reference 
evapotranspiration Continuous raster 

Trabucco and 
Zomer (2018) 

30 arc-seconds 

Annual average aridity 
index 

Vegetative 
cover 

Percentage green 
vegetation cover 

Continuous Raster 
Broxton, Zeng, 
Scheftic, and 
Troch (2014) 

30 arc-seconds 



GeoHazards International March, 2022 
Co-seismic Landslide Susceptibility Map for the Kingdom of Bhutan Project No.: BGC21006 

Appendix A - Detailed Methodology_March24_version A-4 

BGC ENGINEERING INC. 

Category Variable Data Type Source Spatial 
Resolution 

Lithology 
GLiM Global Lithology 
Data 

15-class categorical 
vector 

Hartmann and 
Moosdorf (2012) 

Extracted from a 
vector dataset 
(approximately 

1:1,000,000 
scale) 

Landcover 
Globecover 2009 
Landcover 

20-class categorical 
raster 

Arino et al. (2012) 300 m 

Note: 

1. Relative slope aspect combined topographic data with earthquake location information and is therefore a 
partial function of the earthquake event, unlike the other non-seismic datasets 

A.2.2. Data Extraction for Landslide Observations 

After the explanatory variables had been collected for each of the landslide event areas, BGC 
spatially associated each of the landslide observations with the explanatory variables 
(i.e., positive samples at landslide locations). This was done by either extracting the value of each 
raster dataset at the centroid of each landslide, or in the case where the landslide geometry was 
provided as a point, at the landslide point. The landslide inventories only mapped where 
landslides occurred and did not include any information about where landslides did not occur. 
Therefore, a method was developed to obtain samples of the landslide vicinity where no landslide 
occurred (i.e., negative samples). Numerous methods were explored to generate these negative 
samples for each event. In general, they included the following differences: 

a. Looking either within the bounds of the mapped landslides or within the bounds of the 
Shakemap. 

b. Sampling using a uniform random distribution within the selected bounds, or a non-uniform 
random distribution with a probabilistic tendency to sample near the center of mapped 
landslide inventory (i.e., lower sample density with distance from the centre of the 
landslide inventory). One such approach involved inverse distance weighted (IDW) of 
sample distribution. 

All random samples that were within 385 m1 of a mapped landslide were discarded as potential 
negative samples, and a subset of the random samples were randomly chosen such that the 
number of non-landslide samples equaled the number of landslide samples. This process was 
repeated for each of the landslide inventories. Examples are shown in Figure A-1. 

Each of the sampling techniques exhibited various trade-offs. Models with sampling done 
randomly across the entire Shakemap demonstrated the best accuracy metrics. However, these 
high metrics were potentially misleading because the model was able to use Shakemap variables 
to predominately separate landslide from non-landslide observations. As such these models had 
high error in the vicinity of the landslide inventory, which by the nature of the sampling technique 

 
1  This distance was adopted from Nowicki Jessee et al. (2018), which was the value they found to be the 95th 

percentile of the distance between centroids of the landslides in their inventories. 
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only constituted a fraction of the total sample space. Conversely, models with samples taken from 
within the landslide inventory bounds showed the poorest accuracy metrics. This is believed to 
be because given the extent of the inventories and the resolution of the underlying data, for every 
positive sample there was very likely to be a negative sample with nearly the same physiographic 
characteristics. As a result, the model tended to be unable to separate the landslide (positive) 
samples from the non-landslide (negative) samples with high predictive power. The IDW sampling 
regime was conceived in efforts to merge the two approaches: it samples widely across the 
Shakemap to sample the full range of Shakemap parameter values but places samples more 
densely towards the landslide inventory to force the model to learn to distinguish between 
landslides and non-landslides in highly seismic areas. A maximum of 20,000 landslides were used 
from each inventory. If the number of landslides in the inventory exceeded 20,000, a subset of all 
landslides was chosen at random. 

A.2.3. Model Selection 

Two types of machine learning model algorithms were explored in this work for the development 
of production models: logistic regression (LR) and light gradient boosted machines (LGBM). A 
third model, the weights of evidence (WoE) method was also used, primarily to assist in trouble 
shooting, model validation and parameter sensitivity testing. 

A.2.3.1. Logistic Regression 

Logistic regression is a machine learning model often employed for classification problems, 
particularly for binary classification (i.e., when the target variable takes on a value 0 or 1). The 
model takes on the form in equation [1]: 

 𝑃𝑃(𝑦𝑦 = 1|𝑋𝑋) =
1

1 − 𝑒𝑒−𝜃𝜃𝑇𝑇𝑋𝑋
 [1] 

Where: 

 𝜃𝜃𝑇𝑇𝑋𝑋 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 [2] 

Where:  

𝛽𝛽0 = The model intercept 

𝛽𝛽𝑖𝑖 = The model parameter for variable 𝑖𝑖 with value 𝑥𝑥 

The output of this model represents the probability of the target variable given the input vector 𝑋𝑋. 
The form of this model is similar to that of a multivariate linear regression, with the main 
differences being that the output is a probability and that predictions scale multiplicatively with 
changes in inputs or parameters rather than additively. Logistic regression is a widely used model 
in many fields including the prediction of coseismic landslides (e.g., Nowicki Jessee et al., 2018). 
Its benefits include that it is relatively simple and interpretable, but its main drawback is that it 
cannot capture non-linear interactions between variables without explicit feature engineering.  
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A.2.3.2. Light Gradient Boosted Machines 

Light Gradient Boosted Machines are a regression tree-based machine learning model that relies 
on gradient boosting to build new estimators. The model takes on the form in equation [3]: 

 𝑃𝑃(𝑦𝑦 = 1|𝑋𝑋) = �𝑓𝑓𝑘𝑘(𝑋𝑋)
𝐾𝐾

𝑘𝑘=1

 [3] 

Where:  

𝐾𝐾 = The number of regression tree estimators and 𝑋𝑋 is the input variable vector.  

Each estimator function 𝑓𝑓𝑘𝑘  is a weak regression tree that makes predictions by iteratively making 
splits on input values. In gradient boosting, new estimators are added and trained on the errors 
of the preceding tree. This process is repeated until the model consists of a series of weak 
learners that together provide a model with more predictive power than a single decision tree. 
Due to the presence of numerous trees making numerous splits, this model can capture non-
linear interactions between input variables without specifying them explicitly. This family of models 
has been successfully applied to a variety of problems across many fields. Its main drawback is 
that it is relatively easy to overfit the model and the proper specification of hyperparameters is 
important. 

A.2.3.3. Weights of Evidence 

A modified approach to the weights of evidence method (Bonham-Carter et al., 1989) was used 
as the main framework to develop a coseismic landslide susceptibility map for QA and testing 
purposes. The WoE method is a bivariate statistical approach; this means that landslides are 
compared statistically with each thematic map, one at a time, and individual relationships are 
subsequently combined. The method combines features of various thematic maps expected to 
have some relationship to the presence or absence of landslides. Weights are calculated for each 
thematic map based on the conditional probability (P) of the presence or absence of a landslide 
given the presence of the theme, and these individual weights are combined to develop an overall 
weight map.  

The individual thematic positive weights (Wi) are calculated by taking the logarithm of the ratio of 
spatial probabilities, shown in equation [4], below. The weights are combined through simple 
addition, which is mathematically equivalent to multiplication of the ratios of probabilities as per 
equation [4]. 
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 𝑊𝑊𝑖𝑖 = log �
𝑃𝑃(𝐹𝐹𝑖𝑖|𝐿𝐿)
𝑃𝑃(𝐹𝐹𝑖𝑖|𝐿𝐿�)

 �  [4] 

Where: 

𝑊𝑊𝑖𝑖 = The positive weight for the ith thematic factor  

𝐹𝐹𝑖𝑖 = The presence of the ith thematic factor  

𝐿𝐿 = The presence of a landslide 

𝐿𝐿� = The absence of a landslide 

and 𝑃𝑃(𝐹𝐹𝑖𝑖|𝐿𝐿) is the probability of 𝐹𝐹𝑖𝑖 given 𝐿𝐿 

In the geographic information systems (GIS) environment, the spatial probabilities in equation [4] 
are calculated by summing the number of raster pixels where landslides are present or absent 
and where a specific factor is also present. Equation [4], using GIS raster algebra, hence becomes 
equation [5], below.  

 𝑊𝑊𝑖𝑖 = log ��
𝐴𝐴1
𝐴𝐴2
�/ �

𝐴𝐴3
𝐴𝐴4
� � [5] 

Where: 

𝐴𝐴1 = The area within the specific factor containing landslides  

𝐴𝐴2 = The total area within the analytical study area containing landslides 

𝐴𝐴3 = The area within the specific factor not containing landslides 

𝐴𝐴4 = The total area within the analytical study area not containing landslides 

and the analytical study is the area within which landslides have been completely mapped.  

This approach was modified for the present study, which used random samples of raster values 
from the whole map and associated raster values at every inventoried landslide location. 

The weight values are calculated within a specific point, or map pixel, where the ith theme (say, 
soil type) has a specific value. The Ai values and calculated weight are the same at any other 
point on the map with the same thematic value, and therefore the number of different weight 
values for Wi depends on the number of different thematic values (e.g., number of different soil 
types). 

Landslide susceptibility is obtained by combining the thematic weights, Wi, to obtain an overall 
combined weight, as shown in equation [6].  

 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑊𝑊𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 [6] 
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The combined map will have numeric values ranging between low (highly negative) and high 
(highly positive) values, where higher values represent a higher spatial probability of landslide 
presence. The numeric range in this combined map can be reclassified or subdivided into smaller 
ranges representing, for example, high, medium and low susceptibility. Some degree of testing is 
usually required to allow the map values to be translated into practical meaning. 

Some variations were made from strict application of the weights of evidence method:  

1. 𝑊𝑊𝑖𝑖 described in equation [4] above is the “positive weight” and the formal weights of 
evidence method also includes consideration of negative weights. Positive weights, 𝑊𝑊𝑖𝑖, 
indicate a positive relationship between the presence of a factor and landslide presence, 
while negative weights indicate a negative relationship between factor and landslide 
presence. In the author’s experience, inclusion of the negative weights adds little or no 
information or predictive value to the model, and so they were omitted from the work.  

2. In the standard weights of evidence approach, thematic weight maps are combined 
through direct addition to produce the overall susceptibility map. This approach presumes 
that the various thematic maps considered for inclusion are independent of each other. In 
practice, the various themes are usually correlated to some degree, and better predictive 
power can be obtained by adjusting the value of included weight maps in the model. For 
example, slope angle may be more informative than land use class, and better predictive 
power may be obtained by giving the slope weight map more importance in the final map. 
The map is optimized through trial and error, considering a wide range of combinations to 
find best predictive power. 

3. The principle of parsimony is applied by seeking to minimize the number of explanatory 
variables included in the final model. Themes are excluded from the final model if they 
add little predictive power, as determined by considering the Receiver Operating 
Characteristic Area Under the Curve (RoC AUC) with and without their inclusion. 

4. Rather than wholly or randomly sampling non-landslide areas to compare with the full set 
of landslide points, the whole map area was sampled. This approach includes some true 
positives (i.e., landslides) in the comparative dataset, which can diminish the explanatory 
value of the map values in the resulting analysis. In practice, the resulting error is very 
small if the total fraction of map area occupied by landslides is small. For example, if 1% 
of the map area is occupied by landslides, then any randomly selected point has a 99% 
probability of being a true negative (i.e., not a landslide), which is not substantially worse 
than would be the case when sampling map areas outside inventoried landslides, since 
no inventory is complete and accurate. 

5. Landslides and random map areas were not sampled with equal spatial density, such that 
the ratios of true positives to presumed true negatives (i.e., random points from the map) 
do not represent spatial probabilities as shown in equations [4] and [5]. However, the 
overall ratio is proportional to the spatial probability and the error it introduces can be 
accounted for in the spreadsheet analysis. As a result, however, the map output should 
be considered as a relative susceptibility score, indicative of higher and lower probability, 
but not a direct measure of probability. 
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These variations from the strict approach of Bonham-Carter et al. (1989) create mathematical 
differences from the theoretical approach but they do not affect the value of the resulting analysis. 
The basic assumption of independence between explanatory variables is never fully met and that 
introduces greater potential to vary from the theoretical expectation, in our experience. The value 
of the analytical result is tested through validation trials and does not depend solely on the 
theoretical expectation from the strict formulation. 

In addition to producing an index estimate of landslide susceptibility, it is also possible to transform 
the map values to represent the expected number of landslides per area. This is obtained by 
dividing the total number of landslides sampled from all event databases (283,405) by the total 
area of all event Shakemaps (6,772,000 km2) to obtain an overall average of 0.04185 observed 
landslides per km2, or 1.09 landslide points per random point used in the weights of evidence 
analysis. The calculated weight values can be reclassified based on the number of landslide 
points versus random points (presumed true negatives) within a given range, recognizing that 
each of the 259,986 random samples across all Shakemaps represents 26.05 km2 of map area 
(i.e., 6.77 million km2 ÷ 259,986 points). For any arbitrary range of weight values constraining X 
landslide points and Y random points in the map, the expected landslide density is therefore X / 
[Y x 26.05 x 1.09]. For example, the weight values of 4.80 to 5.31 contain 78 random points, 
representing 2031.9 km2, and 28,207 landslide points, giving an expected landslide frequency of 
12.74 landslides per km2. 

A.2.4. Feature Transformation 

Feature transformation is the process to transform input data to help a model draw more 
information from it. This is important because not all input data is suitable for model training as-is. 
The following feature transformation steps were taken during model development prior to training 
the model: 

1. For the LR model, all categorical features were one-hot-encoded, meaning if a sample 
had a particular lithology, the lithology corresponding to that variable would obtain a value 
of 1 and the value for all other lithology variables received a value of 0. This transformation 
was applied to landcover features as well as lithological features. 

2. In the LR model, all non-categorical features were scaled to obtain a mean of zero and 
variance of 1. This was done to comply with the assumption of the L2 regularization2 
routine employed in the LR training process. Non-categorical features were not scaled in 
the LGBM model. 

3. For the LGBM models, categorical features were not one-hot-encoded. Instead, they were 
given a number between 1 and 15 (lithology) or 1 and 20 (landcover). The categorical 
features were passed separately to the model and the model treated them differently than 
the continuous variables. 

 
2  L2 regularization is an approach applied to the loss function in a machine learning algorithm that penalizes large 

weights. It is employed to address model overfitting. 
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4. For curvature, profile curvature, and plan curvature, the absolute value was usually taken. 
This was to reflect the fact that deviation from a flat plane rather than specifically concavity 
or convexity may be associated with landslides. In the WoE model, both absolute values 
and original values were considered, allowing a check on the importance of concavity 
versus convexity in model power. 

5. The natural logarithms of the mean predicted PGV and PGA were used, as this is what 
was provided in the USGS Shakemaps.  

A.2.5. Model Training and Validation 

The output of the data extraction step was a table containing landslide and non-landslide points 
for each event, along with the values of the explanatory variables at those locations. These data 
were used to train a model to derive the numerical relationship between the explanatory variables 
and the presence or absence of landslides. Numerous LR and LGBM models were created that 
differed in the following categories: 

1. Sampling regime. 

2. Selected input variables. 

3. Model type. 

4. Feature engineering differences. 

The choice of the four settings constituted a unique trial. For each trial a k-fold3 validation was 
completed. This involved creating n-2 folds (n = number of landslide-producing earthquake 
events, n-2 = k), where each fold had a randomly selected group of n-2 events in the training data, 
a common event as the test data, and the remaining event as the validation data. This allowed 
for evaluation of the model on each event such that the model under consideration was validated 
on an event it had not been trained on, for a total of n-2 models. 

For each type of model, various hyperparameter optimizations were completed using the Tree 
Parzen Estimator method. The hyperparameter search spaces used for each model type are 
shown in Table A-3. During hyperparameter optimization, the loss function 𝐿𝐿 was defined 
according to equation [7]: 

 
𝐿𝐿 =

∑ (1 − 𝐹𝐹0.5(𝑘𝑘))𝑛𝑛−2
𝑘𝑘=1

𝑛𝑛 − 2
 [7] 

Where: 

𝑘𝑘 = the fold number 

𝑛𝑛 is the number of events  

𝐹𝐹0.5(𝑘𝑘) = the F-score of a model trained on fold k using a decision threshold of 0.5.  

 
3  A fold is a single random division of all available observed data into a training data subset, a validation data subset, 

and sometimes also a test data subset. In k-fold validation this random division process is completed k times to 
obtain k folds. 
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This equation shows that the hyperparameters were chosen to optimize the average F-score at a 
0.5 decision threshold across all validation events across all folds. The four hyperparameter sets 
with the lowest loss were tested and the models with the results qualitatively judged to be most 
appropriate were selected for use.  

Table A-3. Hyperparameter search space for each model type. 

Model Hyperparameter Name Range 

Logistic Regression1 

Regularization strength [1 x 10-4, 1 x 104] 

Fit Intercept [True, False] 

Solver [lbfgs, liblinear] 

Light Gradient Boosted Machine2 

Number of leaves [2, 212] 

Learning rate [0.01, 0.1] 

Number of estimators [2, 210] 

Max tree depth [2, 12] 
Notes: 

1. Documentation for this implementation and a description of the meaning of the hyperparameters is available here:  
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html. 

2. Documentation for this implementation and a description of the meaning of the hyperparameters is available here:  
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html. 

For a given hyperparameter set, n-2 models were created, and the F-score and RoC AUC score 
were recorded to evaluate performance and determine at which decision threshold the optimum 
F-score was obtained for each validation event. Each model was then evaluated using set 
decision thresholds and the balanced accuracy 𝐵𝐵𝐴𝐴 was calculated according to equation [8]: 

 𝐵𝐵𝐴𝐴 =  
1
2 �
�
𝑇𝑇𝑃𝑃
𝑆𝑆𝑃𝑃
� + �

𝑇𝑇𝑇𝑇
𝑆𝑆𝑁𝑁
�� [8] 

Where:  

𝑇𝑇𝑃𝑃 = the number of true positives 

𝑆𝑆𝑃𝑃 = the number of positive samples 

𝑇𝑇𝑇𝑇 = the number of true negatives 

𝑆𝑆𝑁𝑁 = the number of negative samples 

The balanced accuracy scores across all models in the fold set were used to quantitatively 
evaluate the model performance on unseen data by selecting for models that had the most events 
with a balanced accuracy greater than or equal to 0.9. A final model using all n events in the 
training data was then trained using the same hyper parameters, and the output was qualitatively 
evaluated to check for geospatial and logical consistency. The settings obtained for the final 
LGBM model are shown in Table A-4 and inferred parameter importance based on the number of 
splits in the trees in that model is shown in Table A-5. The settings obtained for the final LR model 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
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are shown in Table A-6 and inferred parameter importance based on the parameter weights is 
shown in Table A-7. 

Table A-4. Settings for final LGBM model. 

Sampling regime Partially random inverse distance weight 
power of 5 

Input variables 

• logPGV 

• logPGA 

• lithology (15 classes) 

• landcover (20 classes) 

• curvature 

• plan curvature 

• profile curvature 

• 3-cell local relief 

• 15-cell local relief 

• 30-cell local relief 

• slope 

Model type LGBM 

Feature transformations 

curvature absolute value 

plan curvature absolute value 

profile curvature absolute value 

Hyperparameters 

Estimators 500 

Leaves 32 

Max depth 5 

Learning rate 0.015 

Table A-5. Parameter importance for final LGBM model. 

Parameter name Long name Importance (based on 
number of splits) 

pga_mean mean logPGA 3108 

pgv_mean mean logPGV 2167 

lithology lithology 2057 

lr_30cell 30 cell local relief 1652 

landcover landcover 1635 

lr_3cell 3 cell local relief 1539 

lr_15cell 15 cell local relief 934 

slope slope 623 

pr_curve profile curvature 481 
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Parameter name Long name Importance (based on 
number of splits) 

pl_curve plan curvature 325 

curv curvature 254 

Table A-6. Settings for final LR model. 

Sampling regime Partially random inverse distance weight 
power of 5 

Input variables 

• logPGV 

• logPGA 

• lithology (15 classes) 

• landcover (20 classes) 

• curvature 

• plan curvature 

• profile curvature 

• 3-cell local relief 

• 15-cell local relief 

• 30-cell local relief 

• slope 

Model type LR 

Feature transformations 

curvature absolute value 

plan curvature absolute value 

profile curvature absolute value 

all features scaled by mean and 
variance 

Hyperparameters 

Fit intercept False 

Solver lbfgs 

Regularization 
strength 

2.2 x 10-4 

Table A-7. Parameter contributions for final LR model. 

Name Value 

logPGV 3.43E-01 

logPGA 3.37E-01 

Slope 1.15E-01 

3-cell local relief 1.08E-01 

15-cell local relief 7.45E-02 

30-cell local relief 5.71E-02 

Profile curvature 5.01E-02 
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Name Value 

Plan curvature 4.80E-02 

Curvature 4.47E-02 

Average annual precipitation 2.06E-02 

Closed needleleaved evergreen forest 2.00E-02 

Basic volcanic rocks 1.96E-02 

Closed to open mixed broadleaved and needleleaved forest 9.33E-03 

Siliciclastic sedimentary rocks 5.94E-03 

Mosaic cropland 3.49E-03 

Intermediate volcanic rocks 2.99E-03 

Acid volcanic rocks 2.96E-03 

Acid plutonic rocks 1.58E-03 

Carbonate sedimentary rocks 1.45E-03 

Closed to open herbaceous vegetation 1.27E-03 

Pyroclastics 1.23E-03 

Sparse vegetation 9.46E-04 

Ice and glaciers 1.93E-04 

Closed broadleaved deciduous forest 4.72E-05 

Open broadleaved deciduous forest/woodland 3.64E-05 

Closed to open broadleaved forest regularly flooded 1.27E-05 

Evaporites -1.59E-06 

No data  -4.15E-06 

Mosaic forest or shrubland/grassland -1.54E-05 

Closed to open grassland or woody vegetation on regularly flooded or 
waterlogged soil fresh brackish or saline water -2.13E-05 

Closed to open broadleaved evergreen or semideciduous forest -2.29E-04 

Intermediate plutonic rocks -2.47E-04 

Basic plutonic rocks -2.63E-04 

No data -3.87E-04 

Metamorphics -6.63E-04 

Water bodies -7.44E-04 

Mosaic grassland/forests or shrubland -7.84E-04 

Open needleleaved deciduous or evergreen forest -1.06E-03 

Bare areas -1.78E-03 

Artificial surfaces and associated areas -1.87E-03 
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Name Value 

Permanent snow and ice -2.27E-03 

Closed to open broadleaved or needleaved evergreen or deciduous 
shrubland -3.40E-03 

Mixed sedimentary rocks -7.43E-03 

Mosaic vegetation -7.70E-03 

Rainfed croplands -1.27E-02 

Unconsolidated sediments -2.84E-02 

Calculated weight values used in the WoE model have not been included in this report but can be 
provided on request. The parameters included in the final models, along with their assigned 
contribution to the models, and shown in Table A-8. 

Table A-8. Parameter contributions for final WoE models. 

Model Parameter Contributions 

Name Description Full 
Model 

PGA Only 
Model 

pga_mean Mean value of ln(PGA) obtained from the USGS 
Shakemap 

1 2.5 

pgv_mean Mean value of ln(PGV) obtained from the USGS 
Shakemap 

1 0 

mmi_mean Mean value modified Mercalli intensity obtained from the 
USGS Shakemap 

0.5 0 

ai_et0 Average annual aridity index 1 1 

et0_yr Average annual evapotranspiration 0.5 0.5 

Average Proportion of green vegetation 1 1 

Land cover Land cover 0.5 0.5 

Slope Slope angle from 30 m SRTM DEM1 0 0.5 

lr_3cell 3 cell (90 m) local relief from 30 m SRTM DEM 1.5 1 

lr_30cell 30 cell (900 m) local relief from 30 m SRTM DEM 0.5 0.5 

lr_300cell 300 cell (9000 m) local relief from 30 m SRTM DEM 0.5 0.5 

A.2.6. Inference 

The model was trained on tabular data that originated from landslide points extracted on raster 
data. To produce a raster predictive map, the model had to use raster data as input. To run 
inference on a model, the DEM for the event of interest was used as the base raster. All other 
features that were not derived from the DEM were then resampled to the resolution of the base 
DEM (~30 m). Continuous rasters were interpolated using bilinear interpolation, and categorical 
rasters were interpolated using nearest neighbour interpolation. All necessary feature 
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transformation steps were applied to the raster data, and it was flattened into a tabular structure 
suitable for input into the model. The model was run using this data, which was then reshaped 
into the original raster array size and written to a tif file. 

Due to various factors regarding experimental design and fundamental aspects of the approach, 
the outputs of the models do not directly represent the probability that a particular cell will 
experience a landslide. The outputs of the models are instead scores that must be modified to 
account for landslide occurrence associated with various score values to translate the output into 
susceptibility. The process by which this is done is explained in Section A.2.3.3. 

A.2.7. Validation of Results 

There are no coseismic landslide inventories available for Bhutan, and so the model could not be 
validated directly for Bhutan. As the best approximate proxy, the magnitude 7.8 earthquake that 
occurred in Nepal on April 25, 2015 was selected (the ‘Gorkha’ event). This event was left out of 
all model training, validation, and testing steps. The accuracy of the model as applied to this case 
is thought to be the best approximation for how the same model could perform for an earthquake 
occurring in Bhutan given the model had not included any Bhutanese or Nepalese data during 
training.  

A.3. RESULTS AND DISCUSSION 

The results of the susceptibility modelling can be broken down into two types of analyses. The 
first deals with the model performance on the global datasets used to create the model. The 
second deals with the interpretation of the susceptibility model itself as a predictor for an 
earthquake not seen in model training. Finally, the coseismic landslide susceptibility map for 
Bhutan is shown for the M7 scenario earthquake in in Drawing 001 and for the M8 scenario 
earthquake in Drawing 002. 

A.3.1. Quantitative Performance of the Coseismic Landslide Models on Global Datasets 

Figure A-2 and Figure A-3 depict balanced accuracy metrics for the LGBM and LR coseismic 
landslide models evaluated across all 23 folds used in the k-fold validation. The balanced 
accuracy metric is calculated for both the decision threshold that maximizes the F-score for each 
validation event and a decision threshold of 0.5. Balanced accuracy is used to evaluate model 
performance because it gives equal weight to true positive (TP) rates and true negative (TN) rates 
and is also easier to interpret than F-score. The use of balanced accuracy reflects the idea that 
we are interested in correctly identifying landslides while also not mis-classifying non-landslides. 
The use of balanced accuracy also allows for comparison against the model proposed in Nowicki 
Jessee et al. (2018). 

Overall, the models demonstrate skill in differentiating between landslide and non-landslide 
events. Evaluation of the LGBM model shows that 14 of 23 events have a balanced accuracy > 
90% at some decision threshold, and 20/23 events have a true positive rate of > 90%. For the LR 
model, 14/23 events have a balanced accuracy > 90% at some decision threshold, and all 
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23 events have a true positive rate of > 90% at their best decision thresholds. At a universal 
decision threshold of 0.5, the skill of both models decreases on average across the entire set of 
events but still shows respectable skill for many events. Notable is the poor performance for the 
2011 Spain M5.1, 2013 China M5.9, and 2001 El Salvador M7.7 events, which show poor true 
positive rates. This means that the model tends to predict that landsliding points are not landslides 
at a decision threshold of 0.5, and that better balanced accuracy metrics are only achieved at a 
lower decision threshold.  

Examining these three events in more detail reveals something about why the model may perform 
poorly for these landslide inventories. One aspect that these three events had in common was 
that their seismicity features (logPGA and logPGV) were lower on average compared to the 
training data for their respective folds, and the distributions of these features with respect to 
landslide and non-landslide points did not align well with the training data. This is demonstrated 
in Figure A-4. Figure A-5 shows that the optimum decision threshold tends to increase with 
increasing seismic load expressed as logPGA. This relationship between optimum decision 
threshold and seismicity highlights how the inclusion of logPGA and logPGV can be challenging 
to do correctly. In many of the landslide inventories across the training set, there are non-landslide 
samples with logPGA and logPGV values that are higher than the logPGA and logPGV values of 
landslide samples from the 2011 Spain M5.1, 2013 China M5.9, and 2001 El Salvador M7.7 
landslide inventories. The model has learned that higher seismicity values tend to be associated 
with landslides, and so for landslide inventories associated with relatively low seismic activity 
relative to the entire compiled dataset, the predicted landslide score is low. However, the 
predictive skill of the model can be increased if the decision threshold is decreased for these 
cases.  

One might wonder why this notion applies to the 2001 El Salvador M7.7 event given that such a 
large earthquake is on the higher end of the event magnitudes included in the inventory. While 
the magnitude was high, the seismicity of the area experiencing landslides was relatively small 
since the epicenter was located offshore. Additionally, a proportion of the randomly selected non-
landslide points had higher seismicity than the landslide points but were not shown to have 
experienced landslides due to either incomplete inventories or other factors not included in the 
model such as proximity to a fault. Generally, it was seen that the optimum decision threshold for 
a given event was proportional to the median logPGA of the landslide samples (Figure A-5), and 
most events were well modelled at some decision threshold that differed based on the nature of 
event and local conditions.   

Given the broad variety of landsliding environments, quality of inventories, and representation in 
the datasets, it is not unexpected that the model does not perform equally across all geographies 
at a given decision threshold. A model that performs equally well for all events at a given threshold 
is desirable since it means that the probabilities are directly translatable across geographies. The 
balanced accuracy scores here indicate that this model is not capable of providing a universally 
useful decision threshold. However, given that the results show that there tends to be a decision 
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threshold that works well for almost all events, the model outputs can still provide value in a local 
context if the probabilities are translated into local meaning. 

A.3.2. Qualitative Performance of the Coseismic Landslide Models on Global Datasets 

Quantitatively, the performance of the LGBM and LR models are similar, but upon inference and 
subsequent generation of a map, numerous differences in the model outputs become evident. 
Figure A-6 and Figure A-7 depict predicted landslide probabilities for the 2010 M7.0 event in Haiti 
for the LGBM and LR models respectively to demonstrate the initial spatial outputs of each model. 
In a leave-one-out validation test, the LGBM scores a balanced accuracy of approximately 0.90 
on the Haiti event, whereas the LR model scored approximately 0.88. However, for the same 
geographical extent, the LGBM model predicts that much more of the map is expected to contain 
landslides, and there is a central ‘halo’ where probabilities are consistently > 0.9.  This halo 
captures many of the observed landslides, but there are also many areas with a high landslide 
score where no landslides were observed (false positives). This is because these regions have 
very similar topographic, lithographic, landcover, and seismic features compared to nearby areas 
where landslides were observed. The same halo region is not as pronounced in the LR model, 
and there is a clearer distinction between the regions within the halo where landslides were 
observed and regions where landslides were not observed. 

For both models, outside of this main halo region and to the south and west of the map, there are 
many strips of high score which align well with the inventory. There are instances of false positives 
and false negatives in both models, but generally higher probabilities are associated with landslide 
events. Where the models deviate most substantially is in the low-lying urban area to the 
northwest of the halo highlighted in Figure A-8. The LGBM model predicts very low chance of 
landsliding in this region, predominantly because the area is quite flat (refer to Figure A-8). 
However, this area has the highest seismicity, and the LR model, being linear, predicts that there 
is a larger than expected landslide score in this area. The LR model weights the logPGA and 
logPGV parameters the highest, and so even though the score is reduced by low values for the 
topographical features, very high seismicity values cause the resulting score to be unrealistically 
high. The non-linear decision mechanism of the LGBM model allows it to correctly identify that 
there should be no landsliding in this flat region, even though the seismicity is high. This allows 
the LGBM model result to be less tied to the patterns of the Shakemap and to eliminate regions 
more accurately where landsliding should not occur, and more confidently identify landslides 
further away from the area of highest shaking, such as in the southwest. This appears to come at 
the cost of a somewhat higher overall predicted score and a more discontinuous score gradient. 

A.3.3. Comparison of Machine Learning and Standard Statistical Approaches 

Our intent was to apply machine learning methods for this work, including initial focus on the LR 
method used by Nowicki Jessee et al. (2018). As discussed earlier, we expanded the work to 
consider other analytical models, ultimately finding both LR and LGBM to give good results. Both 
methods were implemented using routines written in Python and executed on large computing 
servers. This configuration provides a powerful basis for computations with very large datasets. 
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The benefit of fast computations is offset to some degree by greater difficulty tracing the detailed 
logic and probing the models for sensitivity to specific inputs.  

We applied the weights of evidence (WoE) method, first described by Bonham Carter et al. (1989) 
and commonly applied in landslide susceptibility mapping, as an independent test of the machine 
learning models. The WoE method is considerably more flexible than other statistical regression 
methods, as relationships between explanatory data and landslides can be defined arbitrarily 
without the need to match natural functions like straight lines used in linear regression methods 
and sigmoid functions used in LR methods. Rather, the range of values for a continuous 
explanatory variable can be subdivided into specific ranges and associations assigned 
independent of those for adjacent bins. While this flexibility makes the WoE method potentially 
more powerful than others fixed to continuous functions, it can also be easier to overfit data. 
Nevertheless, the method is easily executed in a spreadsheet or simple programming that can be 
traced and explored. It therefore provides a basis for carefully exploring the logic and testing 
various inputs for model sensitivity.  

Comparative results for the LR, LGBM and WoE models are presented in the following sub-
sections; in summary, the LR and LGBM models give broadly similar results to the WoE method. 
Given our confidence in the WoE method from extensive prior use in practice, we are therefore 
very confident in the general validity of the LR and LGBM models. 

In addition to the models already mentioned, we also combined the LR, LGBM and WoE models, 
assigning equal weight to each, to develop an ensemble model. This was done by rescaling the 
three models based on comparative performance for the Nepal earthquake, discussed shortly, 
and adding them. In the special case where we developed a model excluding PGV, also discussed 
shortly, we produced a similar ensemble of two models: LR and WoE. 

The following sub-sections discuss various results for a range of models applied to several 
different earthquake events and scenarios, starting with validation cases in Haiti and Nepal and 
working toward predictions for Bhutan. 

A.3.4. M7.0 Haiti Earthquake of 2010 

Several models were tested for the 2010 Haiti earthquake in relation to landslides from the event 
mapped by Harp et al. (2016). This included the two primary machine learning models (LR and 
LGBM), WoE and the ensemble model with equal contributions from the LR, LGBM and WoE 
models. These were compared with three model results available from USGS, including Godt et 
al. (2008), Nowicki et al. (2014) and the USGS’ preferred model of Nowicki Jessee et al. (2018). 
An additional LR model was run excluding PGV and instead using only PGA as a seismic input; 
that model was included to test models for application to the available Bhutan earthquake 
scenario PGA models, discussed in Section A.4. 

Receiver operating characteristic (RoC) curves are used commonly in the evaluation and 
comparison of predictive model performance. Curves are shown for the various tested models in 
Figure A-9. Curves that approach closer to the upper left corner of the RoC graph capture a higher 
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proportion of actual landslides within a smaller area, and therefore have better predictive power. 
A random guess with no predictive power would be represented by a diagonal line lower left to 
upper right. All models have some predictive power; by inspection, the LGBM model had the best 
performance relative to mapped landslides for this event, with the ensemble model next best. The 
three USGS models have weaker performance than all five BGC-generated model results in this 
case. 

Qualitative performance as judged by the shape and position of the RoC curve can be quantified 
by calculating its integral over the full range of false positive rate (i.e., the x axis) from 0 to 1. This 
provides the “area under the curve” (AUC) which is a simple metric often used to provide a 
convenient basis for quick comparison of model performance. AUC values for the various models’ 
RoC curves in Figure A-9 are provided in Table A-9. Those results show that LGBM has the best 
predictive power, followed by the ensemble model. The two LR models, both with and without 
PGV, have similar performance, and the WoE model is weakest among all BGC models. The best 
USGS models in this case are those of Nowicki Jessee et al. (2018) and Nowicki et al. (2014), 
with both having meaningfully lower performance than the best BGC models. 

It is important to recognize that the shape of the RoC curves and associated AUC is sensitive to 
the model space considered in the comparison. We have used an area extending several 
kilometers around the limits of mapped landslides. If we consider the whole area of the associated 
Shakemaps and resulting landslide susceptibility models, we obtain much higher AUC values, 
approaching 95% or higher. The difference is due to the inclusion of a large additional area of the 
map where absence of landslides is known with very high confidence, changing the proportion of 
true positives and false positives across the map. In other word, actual landslides (i.e., true 
positives) will be constrained within a much smaller area of the map, whereas the outer parts of 
the map can have some proportion of false positives. The selection of area for model testing does 
not affect the relative performance of the models. 

Table A-9. Model comparison for the 2010 Haiti M7.0 earthquake. 

Model RoC AUC 

BGC Models 

Ensemble (LR, LGBM, WoE) 78.9% 

WoE 74.5% 

LR 77.0% 

LGBM 81.2% 

LR (PGA only) 77.2% 

USGS Models 

Godt et al. (2008) 69.5% 

Nowicki Jessee et al. (2018) 72.2% 

Nowicki et al. (2014) 72.1% 

We can also compare model predictive power by estimating the number of expected landslides 
and comparing with observations. We have reclassified our models to provide an estimate for 
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spatial frequency of landslides. This estimate is based on the overall average spatial density of 
landslides from all earthquakes used in our models, as described earlier.  

Figure A-10 shows the ensemble model’s estimated landslide frequency across Haiti, along with 
the mapped landslides from Harp et al. (2016). When we sum these values across the total map 
area for Haiti, we get an estimated number of landslides ranging from a low value of 2,388 for the 
LGBM model to a high value of 5,012 for the LR model. The WoE model produces an estimate of 
2,840 landslides, so that the average estimate from the three BGC models is 3,560 landslides. 
This estimate is much lower than the total number of landslides mapped by Hart et al. (2016), 
23,568, and likely reflects the general variability in landslide density between different events 
around the globe. Some of this difference could be explained by relative soil moisture, which is 
not considered in the model and may have been elevated at the time of the earthquake. 

Comparison between BGC and USGS models for the 2010 Haiti earthquake suggests that our 
models have better predictive power for that event, and they produce an expected number of 
landslides lower than, but in the same order of magnitude as, observations. 

A.3.5. M7.8 Gorkha, Nepal Earthquake of 2015 

The Haiti earthquake discussed previously was included in the data used to develop the model, 
and we therefore expected the model to give reasonable results. The next test was to apply the 
model to a different event, previously unseen by the model. We chose the M7.8 Gorkha event 
given its proximity to the Kingdom of Bhutan, similarity in terrain characteristics along the 
Himalaya, and similarity in magnitude to the M7 and M8 scenarios provided by Geozards 
International (GHI) for study. 

Figure A-11 provides RoC curves for the full range of models considered, and their AUC values 
are listed in Table A-10. The estimated numbers of landslides from the various BGC models from 
approximately equal to the number in the most complete inventory of Roback et al. (2017) to 
approximately 2.5 times the number of mapped landslides. We consider this to be excellent 
performance for a global model, and therefore expect the BGC models to provide a reasonable 
basis for nation-scale predictions for the Kingdom of Bhutan. Among the full models (i.e., models 
that do not exclude PGV), the WoE prediction is closest to actual observations, and therefore may 
be most reliable when full Shakemap products are available. For the PGA-only models, which we 
will apply to the M7 and M8 scenario earthquakes, all three models (i.e., WoE, LR and the 
ensemble combination of the two) are equivalent to each other.  

The BGC models include four that consider all potential seismic inputs and three that exclude 
PGV, for use with the PGA Shakemaps for Bhutan M7 and M8 scenarios. Ensemble models are 
also included, based on equal contribution from two models that exclude PGV (i.e., WoE and LR 
and three full models (i.e., WoE, LR and LGBM). 

Unlike the results for Haiti, in this case the LGBM model is the worst performing BGC model, and 
WoE has the best predictive power. Given this variability in performance among the various 
models for the two different events, there may be value in considering an ensemble predictive 



GeoHazards International March, 2022 
Co-seismic Landslide Susceptibility Map for the Kingdom of Bhutan Project No.: BGC21006 

Appendix A - Detailed Methodology_March24_version A-22 

BGC ENGINEERING INC. 

model for all future predictions. Performance of the BGC models is markedly better than that of 
the USGS models, with our best model having AUC ~ 10% better than the preferred USGS model 
of Nowicki Jessee et al. (2018). 

As discussed previously for Haiti, we can again generate an estimate of the number of expected 
landslides. Estimates for each BGC model are provided in Table A-11. We have three different 
landslide inventories available for this event. Gnyawali et al. (2016) produced an inventory of 
17,532 landslide points. Zhang et al. (2016) mapped 2,645 landslide polygons and Roback et al. 
(2017) mapped 24,915 landslide polygons, including source, transport and deposition zones. 
Roback et al. (2017) separately mapped the source zones for 24,795 landslides. Mapped 
landslides are shown over the BGC ensemble model prediction showing expected landslide 
density in Figure A-12. 

The estimated numbers of landslides from the various BGC models range from approximately 
equal to the number in the most complete inventory of Roback et al. (2017) to approximately 
2.5 times the number of mapped landslides. We consider this to be excellent performance for a 
global model, and therefore expect the BGC models to provide a reasonable basis for nation-scale 
predictions for the Kingdom of Bhutan. Among the full models (i.e., models that do not exclude 
PGV), the WoE prediction is closest to actual observations, and therefore may be most reliable 
when full Shakemap products are available. For the PGA-only models, which we will apply to the 
M7 and M8 scenario earthquakes, all three models (i.e., WoE, LR and the ensemble combination 
of the two) are equivalent to each other. 

Table A-10. Model comparison for the 2015 Gorkha, Nepal M7.8 earthquake. 

Model RoC AUC 

BGC Models 
(PGA only; 
excluding PGV) 

Ensemble (PGA only) 84.4% 

WoE (PGA only) 85.4% 

LR (PGA only) 77.7% 

BGC Models (full) 

Ensemble (LR, LGBM, WoE) 83.9% 

WoE 85.4% 

LR 80.4% 

LGBM 79.9% 

USGS Models 

Godt et al. (2008) 69.9% 

Nowicki Jessee et al. (2018) 75.9% 

Nowicki et al. (2014) 78.1% 
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Table A-11. Expected numbers of landslides for the 2015 Gorkha, Nepal M7.8 earthquake. 

Event BGC Model Expected landslides 
(total) 

2015 M7.8 
Gorkha, Nepal 

Ensemble (PGA only) 26,221 

WoE (PGA only) 27,278 

LR (PGA only) 25,169 

Ensemble (LR, LGBM, WoE) 44,665 

WoE 29,032 

LR 62,359 

LGBM 42,609 

A.4. MODEL APPLICATION TO THE KINGDOM OF BHUTAN 

We first examine model performance against a 2009 M6.1 earthquake that occurred in eastern 
Bhutan. Complete Shakemap products are available from USGS for that event, so we first applied 
our full models to that earthquake. GHI provided PGA-only Shakemaps for two scenario 
earthquakes: M7 occurring along a fault along the western border of Bhutan, and M8 occurring 
along a fault along the full length of Bhutan’s southern border. We applied our PGA-only models 
to those two scenario earthquake events. Figure A-13 shows the expected landslide density 
across Bhutan following the 2009 M6.1 event, and Figure A-14 shows the same result at a larger 
scale. Figure A-15 shows the result in comparison with the model prediction and mapped 
landslides for the 2015 Gorkha earthquake. Qualitatively, the model results suggest very few, if 
any, landslides in Bhutan following the 2009 event. 

Figure A-16 shows PGA-only ensemble model results for the M7 Bhutan scenario earthquake, 
followed by a comparison with model predictions for the Gorkha earthquake in Figure A-17. 
Figures A-18 and A-19 show similar PGA-only ensemble model predictions and comparisons for 
the M8 Bhutan scenario event. Qualitatively, the M7 event is expected to produce far fewer 
landslides than the 2015 Gorkha earthquake, and they will be concentrated near the western 
border, close to the affected fault. The M8 scenario, by contrast, shows high expected landslide 
density across the country, with landslides expected to be more common in the southern half of 
the country. 

As with the Haiti and Nepal earthquakes discussed previously, we can estimate the numbers of 
expected landslides associated with each considered earthquake event. In Table A-12 below, we 
summarize estimates for landslides in Bhutan associated with the three different earthquake 
scenarios under consideration, for each considered model. We distinguish between the total 
numbers of landslides expected across the whole Kingdom of Bhutan and those to be found within 
200 m (i.e., 400 m wide corridor) along any road or any national highway. 

As discussed in the previous subsection, we expect the full WoE model to give the best prediction, 
and it suggests one landslide along a 400 m corridor along national highways, or 18 landslides in 
the whole country. We understand from discussion with GHI and other project partners in a 
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progress meeting in October 2021 that no landslides were documented following that earthquake. 
It is therefore possible that our predictions err on the conservative side. It may also be possible 
that some landslides occurred, but were not observed or reported, given their distance from well-
travelled roads. 

Table A-12. Expected landslides for Bhutan earthquake scenario events. 

Event Model 
Estimated Number of Landslides 

Whole Bhutan All roads 
(within 200 m) 

National Highways 
(within 200 m) 

2009 M6.1 

Ensemble 263 26 6 

WoE 18 5 1 

LGBM 222 29 6 

LR 548 44 11 

M7 
Scenario 

Ensemble (PGA only) 2196 144 38 

LR (PGA only) 3649 200 56 

WoE (PGA only) 754 88 20 

M8 
Scenario 

Ensemble (PGA only) 38334 3998 877 

LR (PGA only) 35873 2716 604 

WoE (PGA only) 40885 5292 1150 

Landslide predictions for the whole of Bhutan for the M8 scenario earthquake range between 
35,873 and 40,885, somewhat higher than the PGA-only model predictions for the M7.8 Gorkha 
event as listed in Table A-11. The ensemble forecast for Bhutan is 38,333 landslides as compared 
with the 26,221 predicted for the Gorkha event. We may therefore expect that a M8 earthquake 
occurring along the southern border would likely produce widespread landslides, being potentially 
more widespread than those following the 2015 event in Nepal. By contrast, the M7 scenario is 
expected to produce an order of magnitude fewer landslides, with an ensemble model forecast of 
2,196 landslides, of which 38 are expected along national highway corridors.
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2. Landslide score predicted by the LGBM model for the 2010-01-12 Magnitude 7.0 event in Haiti.
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2. The logPGA raster from the USGS shakemap overlaid on the SRTM DEM for the 2010-01-12 Magnitude 7.0 event in 
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